viernes, 24 de julio de 2009

Primer trabajo de union de nodos en Corel DrawX3.


Cubismo..gato


Primeros trabajos de union de nodos y darle color!!

Comic



Piezas industriales con contorno marcado (trabajo en clase)
Pieza industrial con contorno marcado.

Aqui los trabajos que nos dejaron... Historia de la Computacion..

HISTORIA DE LA COMPUTACIÓN

Uno de los primeros dispositivos mecánicos para contar fue el ábaco, cuya historia se remonta a las antiguas civilizaciones griega y romana. Este dispositivo es muy sencillo, consta de cuentas ensartadas en varillas que a su vez están montadas en un marco rectangular. Al desplazar las cuentas sobre varillas, sus posiciones representan valores almacenados, y es mediante dichas posiciones que este representa y almacena datos. A este dispositivo no se le puede llamar computadora por carecer del elemento fundamental llamado programa.

Otro de los inventos mecánicos fue la Pascalina inventada por Blaise Pascal (1623 - 1662) de Francia y la de Gottfried Wilhelm von Leibniz (1646 - 1716) de Alemania. Con estas máquinas, los datos se representaban mediante las posiciones de los engranajes, y los datos se introducían manualmente estableciendo dichas posiciones finales de las ruedas, de manera similar a como leemos los números en el cuentakilómetros de un automóvil.

La primera computadora fue la máquina analítica creada por Charles Babbage, profesor matemático de la Universidad de Cambridge en el siglo XIX. La idea que tuvo Charles Babbage sobre un computador nació debido a que la elaboración de las tablas matemáticas era un proceso tedioso y propenso a errores. En 1823 el gobierno Británico lo apoyo para crear el proyecto de una máquina de diferencias, un dispositivo mecánico para efectuar sumas repetidas.

Mientras tanto Charles Jacquard (francés), fabricante de tejidos, había creado un telar que podía reproducir automáticamente patrones de tejidos leyendo la información codificada en patrones de agujeros perforados en tarjetas de papel rígido. Al enterarse de este método Babbage abandonó la máquina de diferencias y se dedico al proyecto de la máquina analítica que se pudiera programar con tarjetas perforadas para efectuar cualquier cálculo con una precisión de 20 dígitos. La tecnología de la época no bastaba para hacer realidad sus ideas.

El mundo no estaba listo, y no lo estaría por cien años más.


En 1944 se construyó en la Universidad de Harvard, la Mark I, diseñada por un equipo encabezado por Howard H. Aiken. Esta máquina no está considerada como computadora electrónica debido a que no era de propósito general y su funcionamiento estaba basado en dispositivos electromecánicos llamados relevadores.

En 1947 se construyó en la Universidad de Pennsylvania la ENIAC (Electronic Numerical Integrator And Calculator) que fue la primera computadora electrónica, el equipo de diseño lo encabezaron los ingenieros John Mauchly y John Eckert. Esta máquina ocupaba todo un sótano de la Universidad, tenía más de 18 000 tubos de vacío, consumía 200 KW de energía eléctrica y requería todo un sistema de aire acondicionado, pero tenía la capacidad de realizar cinco mil operaciones aritméticas en un segundo.

El proyecto, auspiciado por el departamento de Defensa de los Estados Unidos, culminó dos años después, cuando se integró a ese equipo el ingeniero y matemático húngaro John von Neumann (1903 - 1957). Las ideas de von Neumann resultaron tan fundamentales para su desarrollo posterior, que es considerado el padre de las computadoras.

La EDVAC (Electronic Discrete Variable Automatic Computer) fue diseñada por este nuevo equipo. Tenía aproximadamente cuatro mil bulbos y usaba un tipo de memoria basado en tubos llenos de mercurio por donde circulaban señales eléctricas sujetas a retardos.

La idea fundamental de von Neumann fue: permitir que en la memoria coexistan datos con instrucciones, para que entonces la computadora pueda ser programada en un lenguaje, y no por medio de alambres que eléctricamente interconectaban varias secciones de control, como en la ENIAC.

Todo este desarrollo de las computadoras suele divisarse por generaciones y el criterio que se determinó para determinar el cambio de generación no está muy bien definido, pero resulta aparente que deben cumplirse al menos los siguientes requisitos:
La forma en que están construidas.
Forma en que el ser humano se comunica con ellas.
Primera Generación

En esta generación había una gran desconocimiento de las capacidades de las computadoras, puesto que se realizó un estudio en esta época que determinó que con veinte computadoras se saturaría el mercado de los Estados Unidos en el campo de procesamiento de datos.

Esta generación abarco la década de los cincuenta. Y se conoce como la primera generación. Estas máquinas tenían las siguientes características:

Estas máquinas estaban construidas por medio de tubos de vacío.

Eran programadas en lenguaje de máquina.

En esta generación las máquinas son grandes y costosas (de un costo aproximado de ciento de miles de dólares).

Segunda Generación

Cerca de la década de 1960, las computadoras seguían evolucionando, se reducía su tamaño y crecía su capacidad de procesamiento. También en esta época se empezó a definir la forma de comunicarse con las computadoras, que recibía el nombre de programación de sistemas.
Las características de la segunda generación son las siguientes:

Están construidas con circuitos de transistores.
Se programan en nuevos lenguajes llamados lenguajes de alto nivel.

Tercera generación

Con los progresos de la electrónica y los avances de comunicación con las computadoras en la década de los 1960, surge la tercera generación de las computadoras. Se inaugura con la IBM 360 en abril de 1964.3
Las características de esta generación fueron las siguientes:

Su fabricación electrónica esta basada en circuitos integrados.
Su manejo es por medio de los lenguajes de control de los sistemas operativos.

Colores RGB,CMYK,Pantone,Circulo cromatico,Proporcion Aurea,

Colores RGB

La descripción RGB (del inglés Red, Green, Blue; "rojo, verde, azul") de un color hace referencia a la composición del color en términos de la intensidad de los colores primarios con que se forma: el rojo, el verde y el azul. Es un modelo de color basado en la síntesis aditiva, con el que es posible representar un color mediante la mezcla por adición de los tres colores luz primarios. Indicar que el modelo de color RGB no define por sí mismo lo que significa exactamente rojo, verde o azul, razón por la cual los mismos valores RGB pueden mostrar colores notablemente diferentes en diferentes dispositivos que usen este modelo de color. Aunque utilicen un mismo modelo de color, sus espacios de color pueden variar considerablemente.

Colores CMYK


El modelo CMYK (acrónimo de Cyan, Magenta, Yellow y Key) es un modelo de colores sustractivo que se utiliza en la impresión a colores.

Este modelo de 32 bits se basa en la mezcla de pigmentos de los siguientes colores para crear otros más:

C = Cyan (Cian).
M = Magenta (Magenta).
Y = Yellow (Amarillo).
K = Black ó Key (Negro).

La mezcla de colores CMY ideales es sustractiva (pues imprimir cyan, magenta y amarillo en fondo blanco resulta en el color negro). El modelo CMYK se basa en la absorción de la luz. El color que presenta un objeto corresponde a la parte de la luz que incide sobre este y que no es absorbida por el objeto.

Colores Pantone

Pantone Inc. es una empresa con sede en Carlstadt, Nueva Jersey (Estados Unidos), creadora de un sistema de control de color para las artes gráficas. Su sistema de definición cromática es el más reconocido y utilizado por lo que normalmente se llama Pantone al sistema de control de colores. Este modo de color a diferencia de los modos CMYK y RGB suele denominarse color directo.
El sistema se basa en una paleta o gama de colores, las Guías Pantone, de manera que muchas veces es posible obtener otros por mezclas de tintas predeterminadas que proporciona el fabricante. Por ejemplo, es un sistema muy empleado en la producción de pinturas de color por mezcla de tintes. Estas guías consisten en un gran número de pequeñas tarjetas (15×5 cm aproximadamente) de cartón, sobre las que se ha impreso en un lado muestras de color, organizadas todas en un cuaderno de pequeñas dimensiones. Por ejemplo, una página concreta podría incluir una gama de amarillos variando en luminosidad del más claro al más oscuro. Las ediciones de las Guías Pantone se distribuyen anualmente debido a la degradación progresiva de la tinta.

Para poder conseguir el resultado que se espera se debe tener unas muestras de colores sobre diferentes tipos de papel a modo de comprobación.

La ventaja de este sistema es que cada una de las muestras está numerada y una vez seleccionada es posible recrear el color de manera exacta. Para hacernos una idea, es algo parecido a las cartas de colores que miramos cuando vamos a seleccionar un color para pintar nuestra casa.

Círculo cromático

El círculo cromático es una clasificación de los colores. Se denomina círculo cromático al resultante de distribuir alrededor de un círculo los colores que conforman el segmento de la luz. Los colores más comunes de encontrar en un círculo cromático son seis: amarillo, anaranjado, rojo, violeta, azul y verde, aunque para las artes gráficas en el formato digital los colores sean amarillo, rojo, magenta, azul, cian y verde. La mezcla de estos colores puede ser representada en un círculo de 12 colores, haciendo una mezcla de un color con el siguiente y así sucesivamente se puede crear un círculo cromático con millones de colores.

El hexagrama es una estrella de seis picos que se coloca en el centro del círculo cromático. Aunque depende del número de colores usados en el círculo es la cantidad de picos que tenga dicha estrella. Esta estrella muestra los colores complementarios.

Los colores opuestos en el círculo cromático son aquellos que se encuentran uno frente al otro.

El amarillo es el color opuesto al azul
El magenta es el color opuesto al verde
El cian es el color opuesto al rojo

La proporcion Aurea

El número áureo o de oro (también llamado número dorado, razón áurea, razón dorada, media áurea, proporción áurea y divina proporción) representado por la letra griega φ (fi) (en honor a Leonardo de Pisa Fibonacci), es el número irracional:
Se trata de un número algebraico que posee muchas propiedades interesantes y que fue descubierto en la antigüedad, no como “unidad” sino como relación o proporción. Esta proporción se encuentra tanto en algunas figuras geométricas como en la naturaleza en elementos tales como caracolas, nervaduras de las hojas de algunos árboles, el grosor de las ramas, etc.
Asimismo, se atribuye un carácter estético especial a los objetos que siguen la razón áurea, así como una importancia mística. A lo largo de la historia, se le ha atribuido importancia en diversas obras de arquitectura y otras artes, aunque algunos de estos casos han sido objetables para las matemáticas y la arqueología.